Ejemplo de ecuacion de primer grado

Unidad 1 ecuaciones de primer grado e inecuaciones

Veamos ahora qué es una ecuación de primer grado y cómo resolver ecuaciones de primer grado de todo tipo: con paréntesis, con denominadores y con paréntesis y denominadores a la vez, con ejercicios resueltos paso a paso.

En esta ecuación, en el primer miembro tenemos la incógnita elevada a 2 y elevada a 3. En el segundo miembro la incógnita está elevada a 1. Recuerda que si la incógnita no tiene exponente significa que está elevada a 1:

Veamos un ejemplo de cómo se resuelven las ecuaciones sencillas de primer grado. Si entendemos perfectamente este tipo de ecuaciones, será más fácil comprender cómo se resuelven otras ecuaciones de primer grado más complicadas (con paréntesis, denominadores, potencias…).

Mediante la transposición de términos, tenemos que pasar los términos que llevan x al primer miembro y los números que no llevan x al segundo miembro.  Los términos que ya están en el miembro correspondiente no deben tocarse.

Ahora, reescribimos el primer miembro, con los términos con x ya recolocados y el 14 que ya está en el segundo miembro. Lo único que tenemos que hacer es pasar el 2, que es ADDING y pasa HOLDING al segundo miembro:

Ecuación cúbica

Veamos ahora qué es una ecuación de primer grado y cómo resolver ecuaciones de primer grado de todo tipo: con paréntesis, con denominadores y con paréntesis y denominadores a la vez, con ejercicios resueltos paso a paso.

->  Como hacer globos de fomi

En esta ecuación, en el primer miembro tenemos la incógnita elevada a 2 y elevada a 3. En el segundo miembro la incógnita está elevada a 1. Recuerda que si la incógnita no tiene exponente significa que está elevada a 1:

Veamos un ejemplo de cómo se resuelven las ecuaciones sencillas de primer grado. Si entendemos perfectamente este tipo de ecuaciones, será más fácil comprender cómo se resuelven otras ecuaciones de primer grado más complicadas (con paréntesis, denominadores, potencias…).

Mediante la transposición de términos, tenemos que pasar los términos que llevan x al primer miembro y los números que no llevan x al segundo miembro.  Los términos que ya están en el miembro correspondiente no deben tocarse.

Ahora, reescribimos el primer miembro, con los términos con x ya recolocados y el 14 que ya está en el segundo miembro. Lo único que tenemos que hacer es pasar el 2, que es ADDING y pasa HOLDING al segundo miembro:

Ecuación lineal

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

->  El diametro de saturno

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos «atajos» que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Función exponencial

Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a ¡a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar las fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.

->  Despejar ecuaciones con fracciones

Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.

Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.

Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.

Esta web utiliza cookies propias para su correcto funcionamiento. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad