Ecuaciones de primer grado faciles

ecuación lineal

Veamos ahora qué es una ecuación de primer grado y cómo resolver ecuaciones de primer grado de todo tipo: con paréntesis, con denominadores y con paréntesis y denominadores a la vez, con ejercicios resueltos paso a paso.

En esta ecuación, en el primer miembro tenemos la incógnita elevada a 2 y elevada a 3. En el segundo miembro la incógnita está elevada a 1. Recuerda que si la incógnita no tiene exponente significa que está elevada a 1:

Veamos un ejemplo de cómo se resuelven las ecuaciones sencillas de primer grado. Si entendemos perfectamente este tipo de ecuaciones, será más fácil comprender cómo se resuelven otras ecuaciones de primer grado más complicadas (con paréntesis, denominadores, potencias…).

Mediante la transposición de términos, tenemos que pasar los términos que llevan x al primer miembro y los números que no llevan x al segundo miembro.  Los términos que ya están en el miembro correspondiente no deben tocarse.

Ahora, reescribimos el primer miembro, con los términos con x ya recolocados y el 14 que ya está en el segundo miembro. Lo único que tenemos que hacer es pasar el 2, que es ADDING y pasa HOLDING al segundo miembro:

ejemplos de ecuaciones de primer grado

Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a ¡a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar las fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.

->  Que es el joule

Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.

Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.

Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.

ecuaciones de primer grado con una incógnita

Veamos ahora qué es una ecuación de primer grado y cómo resolver ecuaciones de primer grado de todo tipo: con paréntesis, con denominadores y con paréntesis y denominadores a la vez, con ejercicios resueltos paso a paso.

->  Nacionalidad de nikola tesla

En esta ecuación, en el primer miembro tenemos la incógnita elevada a 2 y elevada a 3. En el segundo miembro la incógnita está elevada a 1. Recuerda que si la incógnita no tiene exponente significa que está elevada a 1:

Veamos un ejemplo de cómo se resuelven las ecuaciones sencillas de primer grado. Si entendemos perfectamente este tipo de ecuaciones, será más fácil comprender cómo se resuelven otras ecuaciones de primer grado más complicadas (con paréntesis, denominadores, potencias…).

Mediante la transposición de términos, tenemos que pasar los términos que llevan x al primer miembro y los números que no llevan x al segundo miembro.  Los términos que ya están en el miembro correspondiente no deben tocarse.

Ahora, reescribimos el primer miembro, con los términos con x ya recolocados y el 14 que ya está en el segundo miembro. Lo único que tenemos que hacer es pasar el 2, que es ADDING y pasa HOLDING al segundo miembro:

función exponencial

Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación siempre es verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.

Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.

->  Metodo del poligono ejercicios resueltos

Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).

Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:

Esta web utiliza cookies propias para su correcto funcionamiento. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad